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Problem 3: «In a galaxy Far, Far Away...» 
A planet-ocean moves along an almost circular orbit around a star X in a distant galaxy. The 

axis of the planet proper rotation is normal to the orbital plane and the angular velocity of its proper 

rotation equals the angular velocity of orbital rotation around the star (directions of both rotations 

are the same). The planet consists mostly of water, however, it has a solid nucleus in which nuclear 

decay and gravitational differentiation of depths go on; these processes generate an additional heat 

outflow from within the planet. Nevertheless, the entire planet is covered with an ice crust. The ice 

surface is rough and polluted with cosmic dust, so it warms up quickly on the dayside and the 

radiation into space comes only from the planet surface. 

 

Information on the system X and beyond 

(can be used in any part of the assignment): 

 radius of the star X, RX = 7·10
8
 m; 

 radius of the orbit of the planet-ocean, ro = 7·10
11

 m; 

 free fall acceleration on the surface of planet-ocean, g = 1 m/s
2
; 

 maximum temperature at the equator on the dayside of planet-ocean, T2 = 100 K, and 

temperature at a pole, T1 = 50 K; 

 water density, ρ0 ≈ 1 g/cm
3
, and ice density, ρ ≈ 0,9 g/cm

3
; 

 water heat of fusion, λ ≈ 340 J/g, and vaporization heat, L ≈ 2250 J/g; 

 phase diagram of water is shown below: 
 

 
 

 thermal conductivity of ice   versus absolute temperature T is given by an interpolating 

formula  ( )         (   )  *  
 

     
+, its accuracy in the relevant temperature range 

is better than 5 %; 

 the Stephan-Boltzmann constant, σ ≈ 5,67·10
–8

 W/(m
2
·K

4
). 

 maximum of spectral radiance of the Sun (i.e. the ratio of a radiation power ΔP in a given 

small wavelength interval to its length Δ) corresponds to a wavelength of S ≈ 480 nm, 

while the surface temperature of solar photosphere is largely close to TS ≈ 6000 K. 

  



2 

Part I: Heat Balance and Ice Sheet 

1.1. Determine the heat outflux q0 coming from the depths of planet. Express q0 via the 

quantities given in the problem statement (derive an equation) and evaluate the numerical value 

with at least 5% accuracy. Write the answer in W/m
2
. 

1.2. Determine a thickness H1 of the ice sheet at a pole. Express H1 via the quantities given in 

the problem statement (derive an equation) and evaluate the numerical value with at least 10% 

accuracy. Write the answer in meters.  

1.3. Estimate a thickness H2 of ice sheet at the equator on the dayside of planet-ocean in an 

area of maximum temperature. Express H2 via the quantities given in the problem statement (derive 

an equation) and evaluate its numerical value. Write the answer in meters.  

1.4. Determine a temperature TX of the star photosphere. Express TX via the quantities given 

in the problem statement (derive an equation) and evaluate its numerical value. Write the answer in 

Kelvins.  

1.5. Obtain a relation between maximum daytime temperature T on the planet surface and a 

latitude   (derive an equation).  

1.6. Determine a wavelength   corresponding to the maximum radiance of star X. Write the 

answer in nm.  

 

Part II: Polynya and Crater 

Consider the following situation. Somewhere at the equator in a region of maximum 

temperature a sufficiently large patch of ice sheet has quickly disappeared «without a trace» leaving 

a stretch of open water surrounded by ice. Such a «hole» in an ice sheet is called «polynya». The 

polynya size is of the order of ice sheet thickness and much smaller than the planet radius. 

2.1. Estimate a time τ required for water in polynya to rise to a new equilibrium level 

(measure the time from the moment of polynya formation). Express τ via the quantities given in the 

problem statement and those already found (derive an equation), evaluate the numerical value. 

Write the answer in seconds. 

2.2. Estimate the thickness h0 of ice layer in the polynya immediately after the ice has frozen 

on its surface. Express h0 via the quantities given in the problem statement (derive an equation) and 

evaluate its numerical value. Write the answer in meters.   

2.3. Estimate the depth    of a «crater» which will form on the ice surface at the place of the 

polynya in a sufficiently long time. Write the answer in meters. 

Assume that evaporation and freezing of water occur while its level rises, however, the final 

freezing of the surface layer proceeds after water has almost stopped approaching its new 

equilibrium level.  

 

Part III: Tunnel Freezing 

Consider the processes occurring after initial crust of ice has formed in the polynya. Let us 

assume that the temperature of crust surface equates the temperature of the planet surface fairly 

quickly. Obviously, water will be freezing on the bottom side of ice crust and the crust thickness 

will continue to grow.   

3.1. Estimate a time t1 in which the layer depth increases two-fold compared to the initial 

thickness h0. Express t1 via the quantities given in the problem statement and those already found 

(derive an equation), evaluate the numerical value. Write the answer in Earth days.   

3.2. Estimate an age t2 of a polynya in which the ice depth is h = 100 m. Express t2 via the 

quantities given in the problem statement (derive an equation) and evaluate its numerical value. 

Write the answer in Earth years. 

3.3. Estimate an age t3 of a polynya in which the bottom of ice crust reached the bottom of the 

surrounding ice sheet. Express t3 via the quantities given in the problem statement and the quantities 

already found (derive an equation) and evaluate its numerical value. Write the answer in Earth 

years. 
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Proposed Solution 
Part I 

First of all, notice that the planet always faces the star with a single side given angular 

rotation velocities of the planet (around the star and around its axis).  Furthermore, the angular 

velocity is too small for centrifugal force to cause a significant redistribution of the planet mass. 

Under these conditions, there will be an almost invariable distribution of temperature and phases of 

matter in the planet. Hence, a depth of ice crust on the planet surface will be practically unchanged.    

Suppose that everywhere the crust depth is much less than the planet radius (an indication to 

this fact is given in the second part of the problem). According to the phase diagram of water, the 

temperature at the ice-water interface approximately equals that of the triple point of water 

Tin ≈ 273 K (because the melting point of water remains practically constant in a wide pressure 

range from 10
3
 Pa to 510

7
 Pa). Then a radial temperature gradient inside the crust is much 

greater than a gradient along the plane surface (temperature difference between the highest value at 

the equator and a pole, T2 – T1 = 50 K, is less than one third of Tin – T2 = 173 K and the distance 

between the equator and a pole is much greater than an ice depth). Therefore, a heat flux density 

along the planet surface is negligible compared to the radial one.  

Let us write an equation of heat balance for a small patch of ice sheet located on the planet 

dayside at a latitude θ. The desired heat flux coming from the planet depths (let us call it 

«geothermal») added to the heat flux coming from the star (the latter is a function of the incidence 

angle of star radiation on the surface, i.e. it depends on a «planetocentric» latitude of the patch) 

must be equal to the heat flux radiated by planet surface:  

      
     

  
 

   
      

(here the Stephan-Boltzmann law is used both for the radiant emittance of the star photosphere and 

the planet surface, and T is the ice surface temperature). 

From this equation the following conclusions can be drawn. 

1.1. The star radiation has no effect on a pole (     ), hence, the heat radiated by the 

planet on a pole equals to the desired geothermal flux:  

       
            . 

The data accuracy is surely better than 5%, and a surface flux, if accounted for, contributes even 

less. Hence, the accuracy of the result is better than required.  

1.2. The depth of ice crust on a pole can be found as follows. A geothermal flux through a 

thin layer dH is the same for all layers, according to Fourier’s law, it equals: 

 

    ( )
  

  
      

 

  
∫  ( )  

   

  
. 

 

Substituting the given law  ( )           , in the above equation, where          (   ) 

and   (     )    , one obtains: 

   
 

   
 
(      ) (  

 

 
(      ))  

Numerical calculation yields          . 

Using the information on chemical composition of the planet and the numerical value of the 

free fall acceleration on its surface one can estimate the planet radius which turns out to be about 2-

3 thousand kilometers. Thus, the assumed smallness of the ice sheet depth compared to the planet 

radius is justified and a surface heat flux would contribute less than 0,1%!   This correction can be 

safely ignored and the accuracy of the results obtained in this section is no worse than 10% given 

the accuracy of interpolation formula for  ( ).  

1.3. The depth of the ice sheet on the equator in the area of maximum daytime temperature 

can be found from the formula obtained in 1.2, in which T1 must be replaced by T2. It is not easy to 

estimate the accuracy of this result since we do not know how well the black body approximation 

works in the case at hand (ice reflectivity is not known, although there are indications that it is 

small). Numerical calculations give           . The pressure exerted by such an ice layer is  
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      1,510
6
 Pa. This confirms the above assumption that the temperature at the crust bottom is 

close to 273 K.  

1.4. The equation of heat balance for a small patch of ice at the equator on the planet dayside 

can be now written as 

   
 
  

 

  
   (  

    
 )  

Whence, the temperature of the star photosphere is    √
  

 

  
 (  

    
 )

 
       . 

1.5. Therefore, the maximum daytime temperature as a function of latitude is: 

 

 ( )   √  
  (  

    
 )      

 
 . 

 

1.6. According to Wien’s displacement law,            , therefore,   
  

  
   

    nm, i.e. the star X radiates mostly in the infrared range. 

 

Part II 
After rapid disappearance of ice layer, water will rush upward being pushed by the pressure of 

surrounding ice. There will be almost zero pressure at the surface of rising water although the 

temperature will remain approximately the same and equal to     , the temperature at the triple 

point, as we have already seen in the previous section. According to the phase diagram of water, the 

state of the surface layer will be in «Vapor» area, so it begins to vaporize rapidly. The vaporization 

heat will be taken from lower water layers which cool down and freeze as a result. According to the 

problem statement, both vaporization and freezing proceed at the same pace with the rise of water, 

which at the end results in formation of the solid ice «crust» on the water surface. 

2.1. Pressure above the water surface quickly equates the pressure of saturated vapor but still 

remains negligible compared to       , the pressure exerted by the ice sheet.  The latter will be 

balanced by a pressure of water layer in the polynya then and only then, when the layer depth 

becomes equal to    
 

  
         . Water rushes into the polynya from all directions from 

below and a velocity of water approaching the polynya is sufficiently less than a speed V of the 

rising water column. Therefore, the speed V at the moment when a height of water column equals x 

can be estimated from Bernoulli’s equation:      
    

 
      , whence 

  
  

  
 √  (    ). Therefore, the time it takes water to rise to a height    approximately 

equals   ∫
  

√  (    )
 √

   

 
 √

    

   
    

  

 
s. 

2.2. According to the phase diagram, a near-surface layer boils, so water at temperature Tin 

will freeze only at a depth where the pressure equals p3 ≈ 610 Pa, the temperature at the triple point 

of water. The corresponding depth equals hw = p3/(ρ0g) = 61 cm. The heat required to vaporize a 

water layer of thickness hw will be taken from a lower layer which turns into the layer of ice of a 

thickness h0. Then, according to an equation of heat balance,            . Hence,     
   

    
 

     .  

2.3. Obviously, the crater depth does not change after water in the polynya begins to freeze. 

Therefore, the crater depth is equal to            (  
 

  
)      m. 

 

Part III 
If a depth of ice layer in some place is less than in the surrounding area, the heat outflow 

through the thin «crust» will be much higher, provided the temperature difference is the same, and it 

will not be balanced by the geothermal inflow. Therefore, the ice layer will grow with time t and the 

solidification heat will go out through the ice together with the geothermal flow. Let a depth of the 

growing ice layer at time t be equal to H. Then for a small time interval dt, 
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∫  ( )  

   

  
                      

  

  
 (

 

 
 

 

  
) ∫  ( )  

   

  
 . 

Let us denote ∫  ( )  
   

  
        and integrate the above equation: 

  
  

 
∫

   

    
  

 ( )

  
. 

3.1. At the initial stage of freezing,  ( )      (so the geothermal flow at this stage is 

negligible compared to the heat outflow and can be neglected). In this case, H in the denominator 

can be discarded, then 

   
  

 
( 

(   ) 

 
 

  
 

 
)   

   

  
  

  
   

     
  

                            . 

3.2. In the second case,  ( )     still, so the same formula applies: 

   
  

    
( 

  

 
 

  
 

 
)                             . 

3.3. In the third case, the ice layer is already sufficiently thick:  (  )    , so for an estimate 

one can assume that        . Since the time is mostly spent on a «late» stage of freezing, one 

can simply set      in the integrand numerator, this gives:    

   
    

 

 
∫

  

    

  

 
  

    
 

 
  (

  

     
)   

    

  
  (

  

     
)             

                        . 

Note. Of course, one can derive the general formula without resorting to these 

approximations, in this case:  

  
  

  
*     (

     

    ( )
)   ( )    +. 

One can see that the result changes significantly only in the third case:   

 

                             , 

                              , 

                                        , 

 

i.e. the improved value for t3 is almost two times less. 

 


